Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comp Immunol Microbiol Infect Dis ; 109: 102181, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636298

RESUMO

Ticks and tick-borne pathogens (TTBP) pose a serious threat to animal and human health globally. Anaplasma bovis, an obligatory intracellular bacterium, is one of the more recent species of the Family Anaplasmaceae to be formally described. Owing to its diminutive size, microscopic detection presents a formidable challenge, leading to it being overlooked in laboratory settings lacking advanced equipment or resources, as observed in various regions, including Thailand. This study aimed to undertake a genetic analysis of A. bovis and determine its prevalence in goats and ticks utilizing three genetic markers (16S rRNA, gltA, groEL). A total of 601 goat blood and 118 tick samples were collected from 12 sampling sites throughout Thailand. Two tick species, Haemaphysalis bispinosa (n = 109), and Rhipicephalus microplus (n = 9) were identified. The results herein showed that 13.8 % (83/601) of goats at several farms and 5 % (1/20) of ticks were infected with A. bovis. Among infected ticks, A. bovis and an uncultured Anaplasma sp. which are closely related to A. phagocytophilum-like 1, were detected in each of H. bispinosa ticks. The remaining R. microplus ticks tested positive for the Anaplasma genus. A nucleotide sequence type network showed that A. bovis originated from Nan and Narathiwat were positioned within the same cluster and closely related to China isolates. This observation suggests the potential dispersal of A. bovis over considerable distances, likely facilitated by activities such as live animal trade or the transportation of infected ticks via migratory birds. The authors believe that the findings from this study will provide valuable information about TTBP in animals.

2.
Comp Immunol Microbiol Infect Dis ; 107: 102156, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38457963

RESUMO

Virulent species or strains of hematophagous borne pathogens such as Anaplasma spp., Babesia spp., Theileria spp., and Trypanosoma spp., are lethal to susceptible animals or reduce their productivity on a global scale. Nonetheless, efforts to diagnose the causative agents and assess the genotypic profiles as well as quantify the parasite burden of aforementioned parasites across seasons remain limited. Therefore, the present investigation sought to elucidate the genotypic composition of Anaplasma spp., Babesia spp., Theileria spp., and Trypanosoma spp. The findings revealed heightened infection rates during the summer, manifesting a correlation between Trypanosoma spp. infection and seasonal fluctuations. Among the identified pathogens, Anaplasma marginale emerged as the most dominant species, while the occurrence of Anaplasma platys in Thai cattle was confirmed via the sequencing of the groEL gene. Moreover, the study successfully identified two lineages of Trypanosoma theileri. The findings of this investigation offer valuable insights that can inform the development of preventive strategies for vector-borne diseases, such as considering the appropriate use of insect repellent, mosquito or insect nets, or eliminating breeding places for insects in each season.


Assuntos
Anaplasmose , Artrópodes , Babesia , Doenças dos Bovinos , Parasitos , Theileria , Doenças Transmitidas por Carrapatos , Trypanosoma , Animais , Bovinos , Estações do Ano , Tailândia/epidemiologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/parasitologia , Anaplasma/genética , Babesia/genética , Theileria/genética , Trypanosoma/genética , Anaplasmose/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária
3.
Sci Rep ; 13(1): 20258, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985797

RESUMO

In recent phylogenetic studies, bat Polychromophilus and ungulate Plasmodium, two relatively understudied haemosporidian parasites within the Apicomplexa phylum, have often been overlooked. Instead, the focus has been primarily on haemosporidian parasites in primates, rodents, and birds. Several phylogenetic analyses of bat Polychromophilus have relied on limited datasets and short informative DNA sequences. As a result of these inherent limitations, the substantiation of their evolutionary stance has encountered a diminished degree of robust validation. This study successfully obtained complete mitochondrial genome sequences from 11 Polychromophilus parasites originating from Hipposideros gentilis and Myotis siligoensis bats for the first time. Additionally, the authors have sequenced the apicoplast caseinolytic protease C genes from Polychromophilus murinus and a potentially new Polychromophilus species. These mitochondrial genomes range in length from 5994 to 6001 bp and consist of three protein-coding genes (PCGs), seven small subunit ribosomal RNA genes (SSU rRNA), 12 large subunit ribosomal RNA genes (LSU rRNA), and seven miscellaneous RNA genes. Phylogenetic analyses using Bayesian Inference and Maximum Likelihood methods indicated robust support for the grouping of ungulate Plasmodium and bat Polychromophilus in a single clade separate from other Plasmodium spp., confirming previous reports, albeit with stronger evidence in this study. The divergence between Polychromophilus in bats and Plasmodium in ungulates occurred approximately 29.61 to 55.77 million years ago (Mya), with a node age estimated at 40.63 Mya. These findings highlight that the genus Plasmodium, which includes species found in ungulates, birds, reptiles, and other mammals, does not form a monophyletic group. By incorporating Polychromophilus in bats and Plasmodium in ungulates, this study contributes significantly to understanding the phylogenetic relationships within the Haemosporida order. It provides valuable insights into the evolutionary history and interconnections among these diverse parasites, thereby expanding knowledge in this field.


Assuntos
Quirópteros , Genoma Mitocondrial , Haemosporida , Parasitos , Plasmodium , Animais , Quirópteros/genética , Filogenia , Teorema de Bayes , Plasmodium/genética , Mamíferos/genética , Haemosporida/genética , Parasitos/genética , Roedores/genética , Primatas/genética
4.
Sci Rep ; 13(1): 1838, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725982

RESUMO

Bovine babesiosis is one of the most economically important tick-borne diseases in tropical and subtropical countries. A conventional microscopic diagnosis is typically used because it is inexpensive and expeditious. However, it is highly dependent on well-trained microscopists and tends to be incapable of detecting subpatent and chronic infections. Here, we developed a novel nucleic acid-based amplification method using loop-mediated isothermal amplification (LAMP) in conjunction with a colori-fluorometric dual indicator for the rapid and accurate detection of Babesia bovis based on the mitochondrial cytochrome b gene. We aimed to improve the thermostability, sensitivity, specificity, and alternative visualization of LAMP-based methods. We assessed its diagnostic performance compared to two conventional PCR agarose gel electrophoresis (PCR-AGE) methods. The thermostability of LAMP reaction mixtures and DNA templates in variable conditions was also assessed. In addition, we evaluated alternative visualization methods using different light sources including neon, LED, and UV lights. We found that the LAMP-neon was ten times more sensitive than the PCR-AGE, while the LAMP-LED and LAMP-UV were 1,000 times more sensitive. The current LAMP method showed no cross-amplification with uninfected cattle DNA or other common blood parasites in cattle, including Babesia bigemina, Theileria orientalis, Anaplasma marginale, and Trypanosoma evansi. In addition, the developed LAMP method has good thermostability and the potential for on-site utility as B. bovis DNA could still be detected up to 72 h after initial preparation. Our findings suggested that the developed LAMP method provides an alternative approach for B. bovis detection with sensitivity higher than PCR-AGE diagnostics, high specificity, and the flexibility to use neon, LED, and UV light sources for positive signal observations.


Assuntos
Babesia bovis , Babesia , Babesiose , Doenças dos Bovinos , Animais , Bovinos , Babesia bovis/genética , Neônio , Doenças dos Bovinos/parasitologia , Babesia/genética , Babesiose/parasitologia , Sensibilidade e Especificidade
5.
Ticks Tick Borne Dis ; 14(2): 102110, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577307

RESUMO

Bovine anaplasmosis is a serious tick-borne disease that is responsible for economic loss worldwide. The major surface proteins (MSPs), encoded by msp1 to msp5 genes of Anaplasma marginale, play an important role in host-pathogen and tick-pathogen interactions. These markers have been used for genetic characterization and phylogenetic studies. Despite domestic reports concerning suspected outbreaks of anaplasmosis in Thailand, genetic analysis of A. marginale in the country remains largely limited. Therefore, we aim to investigate the infection rate of the rickettsia organism in the Anaplasmataceae family throughout five regions of Thailand and to further characterize the key genetic markers: msp1a, msp2, and msp5 of A. marginale. From 2016 to 2021, we collected a total of 384 cattle blood samples across 18 provinces. Overall, the infection rate of the rickettsia organism in the Anaplasmataceae family was 46.1%. Over 65% of the positive samples were confirmed as A. marginale. We successfully obtained a total of 138 A. marginale msp1a (38), msp2 (79), and msp5 (21) sequences from all regions of the country. The msp1a and msp2 genes exhibit a high degree of genetic diversity, while the msp5 gene is highly conserved among the Thai isolates. Our findings regarding msp1a corroborated the genetic heterogeneity of A. marginale strains in endemic regions worldwide. Additionally, we found multiple novel variants for the first time in the current nationwide survey. We found 45 tandem repeat characters of the msp1a sequence. Among them, 24 characters were not shared with other countries. Collectively, we expanded the extent of genetic diversity in key markers; msp1a and msp2 genes, and further confirmed the previous finding that msp5 was highly conserved. The msp1a and msp2 genes could be useful for the surveillance of newly introduced strains. The current data may also be useful in designing a vaccine containing potential epitopes of different antigens in the future.


Assuntos
Anaplasma marginale , Anaplasmose , Doenças dos Bovinos , Rickettsia , Bovinos , Animais , Anaplasmose/epidemiologia , Anaplasmose/microbiologia , Proteínas de Membrana/genética , Filogenia , Tailândia/epidemiologia , Sequência de Aminoácidos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo
7.
Sci Rep ; 12(1): 5747, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388073

RESUMO

Ungulate malaria parasites and their vectors are among the least studied when compared to other medically important species. As a result, a thorough understanding of ungulate malaria parasites, hosts, and mosquito vectors has been lacking, necessitating additional research efforts. This study aimed to identify the vector(s) of Plasmodium bubalis. A total of 187 female mosquitoes (133 Anopheles spp., 24 Culex spp., 24 Aedes spp., and 6 Mansonia spp. collected from a buffalo farm in Thailand where concurrently collected water buffalo samples were examined and we found only Anopheles spp. samples were P. bubalis positive. Molecular identification of anopheline mosquito species was conducted by sequencing of the PCR products targeting cytochrome c oxidase subunit 1 (cox1), cytochrome c oxidase subunit 2 (cox2), and internal transcribed spacer 2 (ITS2) markers. We observed 5 distinct groups of anopheline mosquitoes: Barbirostris, Hyrcanus, Ludlowae, Funestus, and Jamesii groups. The Barbirostris group (Anopheles wejchoochotei or Anopheles campestris) and the Hyrcanus group (Anopheles peditaeniatus) were positive for P. bubalis. Thus, for the first time, our study implicated these anopheline mosquito species as probable vectors of P. bubalis in Thailand.


Assuntos
Anopheles , Malária , Plasmodium , Animais , Anopheles/genética , Anopheles/parasitologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Malária/parasitologia , Plasmodium/genética , Tailândia
8.
Parasitology ; 149(5): 654-666, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35115070

RESUMO

The vast majority of trypanosome species is vector-borne parasites, with some of them being medically and veterinary important (such as Trypanosoma cruzi and Trypanosoma brucei) and capable of causing serious illness in vertebrate hosts. The discovery of trypanosomes in bats emphasizes the importance of bats as an important reservoir. Interestingly, there is a hypothesis that bats are ancestral hosts of T. cruzi. Trypanosome diversity has never been investigated in bats in Thailand, despite being in a biodiversity hot spot. To gain a better understanding of the diversity and evolutionary relationship of trypanosomes, polymerase chain reaction-based surveys were carried out from 2018 to 2020 in 17 sites. A total of 576 bats were captured, representing 23 species. A total of 38 (6.6%) positive samples was detected in ten bat species. Trypanosoma dionisii and Trypanosoma noyesi were identified from Myotis siligorensis and Megaderma spasma, respectively. The remaining 18S rRNA sequences of trypanosomes were related to other trypanosomes previously reported elsewhere. The sequences in the current study showed nucleotide identity as low as 90.74% compared to those of trypanosomes in the GenBank database, indicating the possibility of new species. All bat trypanosomes identified in the current study fall within the T. cruzi clade. The current study adds to evidence linking T. noyesi to a bat trypanosome and further supports the bat host origin of the T. cruzi clade. To the best of authors' knowledge, this is the first study on bat trypanosomes in Thailand and their phylogenetic relationships with global isolates.


Assuntos
Quirópteros , Trypanosoma cruzi , Trypanosoma , Trypanosomatina , Animais , Quirópteros/parasitologia , DNA de Protozoário/genética , Filogenia , Tailândia/epidemiologia , Trypanosoma cruzi/genética , Trypanosomatina/genética
9.
Transbound Emerg Dis ; 69(4): e717-e733, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34755483

RESUMO

The study of bacterial zoonoses has been under-pursued despite the fact that bacteria cause the majority of zoonotic diseases, of which 70% have a wildlife origin. More Bartonella species are being identified as the cause of human diseases, and several of them have been linked to domestic and wild animals. Bats are outstanding reservoirs for Bartonella species because of their wide distribution, mobility, roosting behaviour, and long life span. Here, we carried out a PCR-based survey on bats that were collected from 19 sampling sites in eight provinces of Thailand from February 2018 to April 2021. Bartonella infection was investigated in a total of 459 bats that belong to 24 different bat species (21 species of which had never been previously studied in Thailand). PCR diagnostics revealed that 115 out of 459 (25.5%) blood samples tested positive for Bartonella. The nucleotide identities of the Bartonella 16S rRNA sequences in this study were between 95.78-99.66% identical to those of known zoonotic species (Bartonella ancashensis, Bartonella henselae, Bartonella bacilliformis and Bartonella australis) as well as to an unidentified Bartonella spp. In addition, the citrate synthase (gltA) and RNA polymerase-beta subunit (rpoB) genes of Bartonella were sequenced and analyzed in positive samples. The gltA and rpoB gene sequences from Hipposideros gentilis and Rhinolophus coelophyllus bat samples showed low nucleotide identity (<95%) compared to those of the currently deposited sequences in the GenBank database, indicating the possibility of new Bartonella species. The phylogenetic inference and genetic diversity were generated and indicated a close relationship with other Bartonella species previously discovered in Asian bats. Overall, the current study demonstrates the primary evidence pointing to a potential novel Bartonella species in bats. This discovery also contributes to our current understanding of the geographical distribution, genetic diversity, and host ranges of bat-related Bartonella.


Assuntos
Infecções por Bartonella , Bartonella , Quirópteros , Animais , Bartonella/genética , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/microbiologia , Infecções por Bartonella/veterinária , Quirópteros/microbiologia , Variação Genética , Humanos , Nucleotídeos , Filogenia , RNA Ribossômico 16S , Tailândia/epidemiologia
10.
Int J Parasitol Parasites Wildl ; 13: 51-61, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32904325

RESUMO

Malaria parasites in the phylum Apicomplexa (Order: Haemosporida) infect diverse vertebrates and invertebrate hosts. At least seven genera of haemosporidian parasites have been described to exclusively infect bats. Most of these parasites remain enigmatic with a poorly known host range. Here, we investigated 271 bats belonging to 21 species and seven families from six provinces of Thailand. Overall, 124 out of 271 bats (45.8%) were positive for haemosporidian parasites, while none had Plasmodium, based on microscopic examination of blood smears and PCR amplification. We obtained 19 distinct cytochrome b (cytb) nucleotide haplotypes of Hepatocystis from seven bat species (families: Craseonycteridae, Hipposideridae, Pteropodidae, and Rhinolophidae). Nycteria was found in four bat species (Craseonycteridae, Emballonuridae, Megadermatidae, and Pteropodidae) and Polychromophilus in two species (Emballonuridae, Vespertilionidae). Phylogenetic analysis inferred from cytb sequences placed Hepatocystis into 2 different clades. Most Hepatocystis infections were found in insectivorous bats and clustered together with a sequence from Hipposideros larvatus in Cambodia (in subclade 1a). A single sequence of Hepatocystis obtained from a frugivorous bat, Cynopterus brachyotis, was placed in the same clade with Hepatocystis from the same bat species previously reported in Malaysia (clade 2). Nycteria in these Thai bats were clearly separated from the African isolates previously reported in bats in the family Rhinolophidae. Polychromophilus murinus from Myotis siligorensis was placed in a distinct clade (clade 2) from Polychromophilus melanipherus isolated from Taphozous melanopogon (clade 1). These results confirmed that at least two distinct species of Polychromophilus are found in Thailand. Collectively, Hepatocystis presented no host specificity. Although Megaderma spasma seemed to be infected by only Nycteria, its respective parasite does not show specificity to only a single bat host. Polychromophilus murinus and P. melanipherus seem to infect a narrower host range or are somehow restricted to bats in the families Vespertilionidae and Emballonuridae, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...